

إحدى شركات مجموعة البدرى للتنمية والاستثمار

BADRY Electro-Mechanical Works Co.

MODERATE GEOTHERMAL GHP HVAC SOLUTION

ORANA Food Plant HVAC Systems Upgrade @ Badr City

FACILITY MODERATE GHP / HVAC SYTEMS 300 TONs Quotation # 16235-01–010-1434, Rev 01 – Feb. 2020

BADRY MEP Electro-Mechanical Works Co.

6B, Sixth October St., Manshiet Al Sad Al Aaly, Al-Salam, Cairo, Egypt. P.O Box 1527 Alf Maskan, Cairo, Egypt. Tel: +202 219 06 401, +202 219 06 362 Fax: +202 219 06 823 - Cell: +20 100 57 43 852 E-mail: mep@badrygroup.com Web : www.Badrygroup.com

BADRY MEP Co.

BADRY GROUP Member - Code 010

P.O.Box 1527 Alf Maskan Cairo 11777, Egypt Phone 21906401 Fax 21906823

Quotation For:

Project	Geothermal GHP HVAC Solution for Badr Plant
Name	Mr. Mahendra Dhote
Company/Auth.	ORANA
Address	Plot 145, Area 250 Yard, Robeyky - Badr City
Tel / Fax	02 23 10 82 23 / 23 10 82 27
Cel / Mob	+2 0109 532 2552
E-Mail	msd@orana.com.eg

DATE 26/02/2020 Quotation # 16235 (Rev 1) Customer ID 1434

Quotation valid until: 30/04/2020 Prepared by: Gehad Salah

Moderate Geothermal Solution

Facility HVAC Systems - 300 Ton

Terms or20% In Advance (A.P), R.T (Raise To) 50% Material, R.T 95% Install Invoices, 05% RET. / DeliverySpecial Cond.;Delivery 10 Working Months (W.M) From W.O & A.P, Design, Approved WSDs (2 W.M) Design Recipt

SALES PERSON	QUOTE NUMBER	DELIVERY	SHIP VIA	SITE	TERMS
Gehad Salah	16235-1 / 010 / 1434	12 Months (10 + 2) W.M	LAND - DTD	Badr City	Due on Order

CODE	DESCRIPTION	BOQ	ADD / ENG	AMOUNT USD)
VENT-01	GEOTHERMAL SYSTEM FOR AREA VENTILATION Acc. To. Table D-1-01: BOQ - Geothermal Ground Coupled System for the Ventilation of Production Area	410,000	15,000	USD 425,000
ACND-01	GEOTHERMAL SYSTEM FOR AIR CONDITIONING Acc. To. Table D-2-01: BOQ - Geothermal Ground Coupled System for the Air Conditioning of the Adminstrative Area	660,000	15,000	USD 675,000
HEAT-01	GEOTHERMAL SYSTEM FOR WATER / STEAM HEATING Acc. To. Table D-3-01: BOQ - Geothermal Ground Coupled System for the Heating Steam of Food Production Area	524,542	28,000	USD 552,542
A. Client is Require	d to Provide at Site (Our Prices Exclude Any of);		SUBTOTAL	USD 1,652,542
1- Site Facilities; Pov	ver, Lighting, Water, Drainage - Sources		VAT TAX	USD 231,356
2- Storage Area, Site	Office, Lisences, Permits from Any /others Entrance & Exis	t Fees	SOC. INSUR	USD 66,102
B. Quote Prices bas	sed on RE-MEASURE SUB-CONTRACT, FIRST Perurity is	BOQ	OTHERs	USD 50,000
C. ADD / ENG expre	ess Engineering, Work-Shop-Drawings & AS-Builts Drawi	ngs	TOTAL	USD 2,000,000

D. Others is a non refund cost values express Mobilization, Accomodation

If you have any questions concerning this quotation contact Ms. Gehad Salah Tel +20 2 219 06 401, Fax +20 2 219 06 823, hasoegypt@gmail.com, mep@badrygroup.com

THANK YOU FOR YOUR BUSINESS!

شركة البدري لأعمال التهويه والتبريد والتكيف والتدفئة GEOTHERMAL SYSTEM AIR EQUIPMENT CALCULATION

 Table C - Air Equipments Calculation

إحدى شركات مجموعة البدرى للتنمية والاستثمار

BADRY HVAC Warks Co.

Ventilation for Production Area Project - Quote 16231-00

 Table C-1: Air Equipment Calculation for the Ventilation for Production Area Project

	Producti	on Ar	ea Ven	tilation	- Wate	er To Ai	ir "a" - (GHP/ A	HU (s)	Calcula	ation	
S.N	Area Description	Class	ISO	Area (m ²)	Area (ft ²)	Height (ft)	Volume (ft ³)	ACPH	CFM Steady	Add CFM Fresh Air	Add CFM Heat Load	CFM SUM
1	Production Area	N/A	N/A	308	3315	33	109395	15	27,349	0	2,000	29,349
2	Corridors Area	N/A	N/A	105	1130	33	37290	12	7,458	746	400	8603.80
3	Services Area	N/A	N/A	37	398	10	3980	20	1,327	199	522	2047.67
а	AHU(s) / G.H.P(s)	8,000	40,000	CFM	20	100	TR	5	36,133	945	2,922	40,000
		CFM	ALL		Ton	ALL		QTY				CFM _{Total}
		A.H.U			G.H.P	Geothermal	Heat Pumps	G.H.P				

شركة البدري لأعمال التهويه والتبريد والتكيف والتدفئة GEOTHERMAL SYSTEM AIR EQUIPMENT CALCULATION

 Table C - Air Equipments Calculation

إحدى شركات مجموعة البدرى للتنمية والاستثمار

BADRY HVAC Warks Co.

Air Condition for Adminstrative Area Project - Quote 16232-00

Table C-2: Air Equipment Calculation for the Air Condition for Adminstrative Area Project

	Adminstrativ	e Area	a Air C	onditio	n - Wa	ter To V	Vater "	b" - GH	I <mark>P/ AH</mark> L	J (s) Ca	lculatio	on
S.N	Area Description	Class	ISO	Area (m ²)	Area (ft ²)	Height (ft)	Volume (ft ³)	ACPH	CFM Steady	Add CFM Fresh Air	Add CFM Heat Load	CFM SUM
1	Ground Floor Area	N/A	N/A	182	1960	10	19600	30	9,800	1,960	2,000	13,760
2	First Floor Area	N/A	N/A	173	1862	10	18620	30	9,310	1,862	2,000	13,172
3	Services Area	N/A	N/A	145	1560	10	15600	36	9,360	1,872	1,836	13,068
b	AHU(s) / G.H.P(s)	10,000	40,000	CFM	25	100	TR	4	28,470	5,694	5,836	40,000
		CFM	ALL		Ton	ALL		QTY		•		CFM _{Total}
	A.H.U				G.H.P	Geothermal	Heat Pumps	G.H.P				

BADRY Electro-Mechanical Works Co.

Geothermal System Air Equipment Calculation

Table C – Air Equipment's Calculation

Heating Steam for Food Production Project - Quote 16233-01

Table C-3: Air Equipment Calculation for Heating Steam for Food Production Project

Heating Water with Steam Heat Exchan	gers - Shell and	Tube Exchanger
Steam is on the Shell side		
Product to heat is on the Tube Side		
Temperature in	68	F
Temperature out	320	F
Delta T	252	F
Gallons to Heat	5.00	US GPM
Gallons to Heat	4	IMP Gall / Minutes
Gallons to Heat	250	Imp Gallons / Hour
Based on S.Gravity	2498	Lbs / Hour
Heating	19	Litres / Minutes
Specific Heat of Liquid (Cp)	1	BTU / LB F
Specific Gravity	1	
Steam Pressure	150	psig
Latent Heat at Steam Pressure	880	BTU / LB
Safety Factor (Eff. H. Exch)	85	% Efficiency
	740,586	BTU / Hour Required
	186,628	Kcal / Hr to Exchanger
Load of Heat Exchanger	842	LBS / Hour of Steam Required
BHP - Using Heat Exchanger	24.4	BHP ☆
Direct Injection of Steam into Water	630.0	LBS / Hour of Steam Required
BHP - Direct injection of Steam into water	18.3	BHP ☆

Geothermal / Ground Source Coupled Heat Pump – Water To Water G.H.P:

Total Heat Load =

186,628 K.Cal/Hr (Heat Steam for Production)

+ 113,372 K.Cal/Hr (Hot Water for Cooking)

Total Heat Load = 300,000 K.Cal/Hr

= 1,200,000 BTU/Hr

Total Heat Load = 100 Ton

Using: # 3 G.H.P (2+1); 2 Operation + 1 Backup / Standby Each of 50 Ton, Water To Water Heat Pump (Ground Coupled)

6B, 60 October st., Menshiat El-Sad ElAley - El Salam, Cairo, Egypt. Tel.: (+202) 22958530 - 22955487 Fax: (+202) 22995860 ۲۰ شارع ۲ أكتوب رمنشيه السد العالى السلام القاهرة. تليفون : ۲۲۹۵۸۵۳۰ – ۲۲۹۵۵٤۸۷ (۲۰۲+) فاكس : ۲۲۹۹۵۸۳۰ (۲۰۲+)

BADRY Electro-Mechanical Works Co.

Moderate Geothermal System Costing Calculation

Table A-01 – Per TON's Cost Calculation - 2020

Moderate Geothermal System Project – Per Ton Calculations

Table A-01 : Moderate Geothermal HVAC Systems Construction Cost & Per Ton Calculation :-

S.N	Area	HVAC System	Load (Ton)	Notes	Total COST (USD)	Per Ton (USD)
1	Production Area	Ventilation	100	Cool Only	425,000	4,250
2	Adminstration Area	Air Condtion	100	Cooling + Hydronic Warming	675,000	6,750
3	Production Area	Heating	100	Heating (Water / Steam)	552,542	5,525
S	Facility HVAC	SUM	300	Exclude TAXs	1,652,542	5,508
				Taxes & Social Insur.	297,458	992
				Others, Mobilization 50,000		167
Р	Facility HVAC	Total	300	Enclude TAXs	2,000,000	6,667
			TON		Total HVAC COST	Per Ton Cost

Geothermal Facility HVAC Systems Construction Cost:

- Total Facility Moderate GHP / HVAC Systems Load = 300 Ton
- Total Facility Moderate GHP / HVAC Systems Cost = 2,000,000 USD

Fax: (+202) 22995860

• Per Ton Moderate GHP / HVAC Systems Cost = 6,667 USD

Notes of Pricing:

Tel.: (+202) 22958530 - 22955487

- Above <u>Moderate Solution</u> HVAC Facility Systems has (<u>40%</u> Energy Reduction) with 5Y Warranty from 25Y Lifetime, of (2,000,000 USD), China GHPs total price = 700,000 USD (35% of Total System Price) and Per Ton Price (6,667 USD) based on China Origin GHPs via brands same as AMRTA, NE and Mango.
- 2) <u>Economical Solution</u> (60% Energy Reduction) with 5Y Warranty from 25Y Lifetime, of (3,000,000 USD), China GHPs total price = 1,110,000 USD (37% of Total System Price) and Per Ton Price (10,000 USD) based on China Origin GHPs via brands same as AMRTA, NE and Mango.
- 3) <u>Hi-Level Solution</u> (70% Energy Reduction) with 10Y Warranty from 30Y Lifetime for HVAC Facility Systems will be of (5,250,000 USD), US GHPs total price = 3,360,000 USD (64% of Total System Price) and Per Ton Price (17,500 USD) based on US Origin GHPs via brands same as Northern, Bard and Thermal-Air.

6B, 60 October st., Menshiat El-Sad ElAley - El Salam, Cairo, Egypt.

۲ب شارع ۲ أكتوبر منشيه السد العالى السلام القاهرة. تليفون : ۲۲۹۵۸۵۳۰ – ۲۲۹۵۵۶۸۲ (۲۰۲+) فاكس : ۲۲۹۹۵۸۲۰ (۲۰۲+)

BADRY Electro-Mechanical Works Co.

Moderate Geothermal HVAC System Savings Calculation Table B-01 – Comparison of Energy Sources Cost Calculation - 2020 Moderate Geothermal HVAC System Project – SAVINGs Calculations

Table B-01 : Moderate Geothermal HVAC Systems Compared Energy Cost & Savings :-

	Traditional Electric Resistant HVAC Systems Annual Costs													
S.N	Area	HVAC System	Load (Ton)	•	erational Ene	ergy Used (Q Natura	TY / COST) al Gas	SUM Annual <u>Energy</u>	SUM Annual <u>Maintenance</u>	TOTAL Annual <u>T. HVAC</u>				
				KWH (s)	Cost / USD	MMBTU (s)	Cost / USD	COST (USD)	COST (USD)	COST (USD)				
1	Production Area	Ventilation	100	150,000	15,000	0.00	0.00	15,000	20,000	35,000				
2	Adminstration Area	Air Condtion	100	650,000	65,000	0.00	0.00	65,000	50,000	115,000				
3	Production Area	Heating	100	200,000	20,000	16,667	100,000	120,000	30,000	150,000				
ST	Facility HVAC	SUM	300	1,000,000	100,000	16,667	100,000	200,000	100,000	300,000				

	Moderate Geothermal GHP Heat Pump HVAC Systems Annual Costs													
				Annual Op	erational Ene	ergy Used (Q	TY / COST)	SUM	SUM	TOTAL				
S.N	.N Area	HVAC System	Load (Ton)	Elect	Electricity		al Gas	Annual <u>Energy</u> COST	Annual <u>Maintenance</u> COST	Annual <u>G. HVAC</u> COST				
				KWH (s)	Cost / USD	MMBTU (s)	Cost / USD (USD)		(USD)	(USD)				
1	Production Area	Ventilation	100	135,000	13,500	800	4,800	18,300	30,000	48,300				
2	Adminstration Area	Air Condtion	100	530,000	53,000	1,400	8,400	61,400	30,000	91,400				
3	Production Area	Heating	100	135,000	13,500	11,133	66,800	80,300	30,000	110,300				
S _G	Facility HVAC	SUM	300	800,000	80,000	13,333	80,000	160,000	90,000	250,000				

Moderate Geothermal Facility HVAC Systems Savings:

- Applied Moderate GHP HVAC Systems has cost 80% of existing Electric Resistant Systems for same load of 300 Tons
- Applied Moderate GHP HVAC Systems has the Lower Operating Cost, Lower CO2 Emissions and so Lower Sound Ratings
- Estimated Annual Savings for HVAC Operations & Maintenance = 50,000 USD "Per Year"

Notes of Savings:

- 1) Estimated Energy costs based on industrial applications tariff @ EGY 2020 via 6 USD for MMBTU Natural Gas and 10 Cent for KWH, and within given data that operation through 8-10 working hours a day at facility.
- 2) Moderate Energy (Qty & Cost) Savings due to the existing Air Condition system based on Mini Split AC Units and Electric Heaters and Boilers for Administrative heating and air conditions in which all will be replaced by Moderate GHP Centralized HVAC Systems.
- 3) Moderate GHP HVAC Systems all will be higher efficiency, comfort and echo friendly plus lower cost compared to existing traditional Electric Resistant HVAC System.

6B, 60 October st., Menshiat El-Sad ElAley - El Salam, Cairo, Egypt.

۲ب شارع ۲ أكتوبر منشيه السد العالى السلام القاهرة. تليفون : ۲۲۹۵۸۵۳۰ – ۲۲۹۵۵۶۸۲ (۲۰۲+) فاكس : ۲۲۹۹۵۸٦۲ (۲۰۲+)

Tel.: (+202) 22958530 - 22955487 Fax: (+202) 22995860

BADRY Electro-Mechanical Works Co.

Moderate Geothermal HVAC System Payback Calculation

Table E-01 – Geothermal HVAC System PAY-BACK Calculation - 2020

Moderate Geothermal HVAC System Project – PAY-BACK Calculations

Table E-01 : Moderate Geothermal HVAC Systems PAY-BACK :-

G	Facility HVAC Systems	300	2,000,000	6,667	250,000
Мос	lerate Geothermal System	TON	First Base COSTs	Per Ton First Base Cost	Energy + Maintenance Annual COSTs
Е	Facility HVAC Systems	300	1,650,000	5,500	300,000
Tra	ditional Electric Resistant	TON	First Base COSTs	Per Ton First Base Cost	Energy + Maintenance Annual COSTs
S	SAVINGs	300	350,000	1,167	50,000
Мос	lerate Geothermal System	TON	First Base SAVINGs	Per Ton First Base Saving	Energy + Maintenance Annual SAVINGs
Ρ	PAY-BACK	300	350,000	50,000	7
Мос	lerate Geothermal System	TON	First Base SAVINGs	Energy + Maintenance Annual SAVINGs	YEARs

Moderate Geothermal Facility HVAC Systems Payback year's calculation:

- Estimated Payback years for Submitted Moderate Geothermal GHP HVAC Systems of 300 Tons is 7 Years.
- Successful Geothermal HVAC System Paybacks are within 5 10 Years.
- Noting the Life-Time of existing Air Condition (Split AC Units) is around 5 7 Years, compared to Geothermal HVAC System of 30 Years Life-Time Thus makes additional added value for GHP savings and Payback years.
- HVAC System Economics lead to its Bottom Line equals the sum of First Base Costs (Initial Construction and building Costs) and the Energy Costs (for Operation) and the Maintenance Cost (Preventive & Services Repair).
- First Base Cost is greatly influenced by effective design.
- Moderate Geothermal HVAC System has Higher Economic Benefits of Performance, Energy Efficient, Comfortable Operation, Reduction of Energy Costs, Payback rates than Electric Resistant HVAC System.

6B, 60 October st., Menshiat El-Sad ElAley - El Salam, Cairo, Egypt.

Tel.: (+202) 22958530 - 22955487 Fax: (+202) 22995860

۲۰ شارع ۲ أكتوبر منشيه السد العالى. السلام. القاهرة. تليفون : ۲۲۹۵۸۵۳۰ – ۲۲۹۵۵٤۸۲ (۲۰۲+) فاكس : ۲۲۹۹۵۸٦۰ (۲۰۲+)

شركة البدرى للأعمال الكهروميكانيكية

إحدى شركات مجموعة البدرى للتنمية والاستثمار

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR AREA VENTILATION -- Project Quote 16231-01 (VENT-01)

				Offered	Supp	oly (USD)	Erect	ion (USD)	Total Supply
S.N	Item Description	Unit	QTY	Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
1	Geothermal System Design & Ground Testing								
	Ground Geothermal Sytem Testing & Designing, provides the designer with accurate information on the thermal conductivity, loop design can be optimized and the path of of piping and Bore-Holes. Tests with Field Testing Appartus will be conducted by drilling borehole and adding loop with hot water from a portable electric heater is circulated. Data log is run over 48 hours and energy absorbed by the ground is measured so that the conductivity and diffusivity could been calculated. Then, Submitting of Trenched Horizontal / Vertical Loop Design, c/w Bore-Hole Layout using Software Design for Ground Loops, Piping								
1-a	Ground Testing for Geothermal of the Planned / Upgrade Area	LS	1	BADRY	0	0	7500	7,500	7,500
1-b	Ground Loop Design for Geothermal of the Planned / Upgrade Area	LS	1	BADRY	0	0	7500	7,500	7,500

شركة البدرى للأعمال الكهروميكانيكية

إحدى شركات مجموعة البدرى للتنمية والاستثمار

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR AREA VENTILATION -- Project Quote 16231-01 (VENT-01)

				Offerred	Supp	ly (USD)	Erect	ion (USD)	Total Supply
S.N	Item Description	Unit	QTY	Offered Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
2	Ground Closed Loop Hydrulic Piping Works								
	Under Ground Geothermal closed loop; Trenched Horizontal / Drilled Vertical, Loop Piping works via HDPE System, c/w Bore-Hole Layout using Software Design for Ground Loops, Piping of HDPE material c/w all required fittings to act as a heat exchanger same to cooling coil. Item complete with Backfill & Grouts for the piping jacket avoiding Air Gaps or seprations via grouting with Thermal Grouts of 60% Quartezil and 20% Cement, 10% Fly Ash, 10% Sand. Hydrulic Fluid of Antifreeze Water Based Solution as a water source refrigrant for Heat Pump to be supplied and equiped.								
2-a	Trenched horizontal HRZ Loop with 6 ft depth, Bore-hole 3 Inch	Ton	40	BADRY	400	16,000	900	36,000	52,000
2-b	Drilled Vertical VER Loop with 100 ft depth, Bore-hole 5 Inch	Ton	60	BADRY	600	36,000	1200	72,000	108,000

شركة البدرى للأعمال الكهروميكانيكية

إحدى شركات مجموعة البدرى للتنمية والاستثمار

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR AREA VENTILATION -- Project Quote 16231-01 (VENT-01)

					Supp	ly (USD)	Erect	ion (USD)	Total Supply
S.N	Item Description	Unit	QTY	Offered Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
3	Geothermal System Equipments (GHP Equipments)								
	Supply, installation, testing and commissioning of Geothermal water source Heat Pump with R-410a Refrigrant with wider fluid operating range and additional insulation of internal co-axial coils, thermal expansion TX Valves and heat exchangers optimized for geothermal operating conditions. GHP to be designed and supplied with <u>FIXED 3 GPM</u> Flow System c/w two-way isolating valves at each heat pump that shut off the flow when the compressors is not runing. Heat Pump to be modulated and equipeed with <u>Electric Protection Panel</u>								
3-а	GHP Constant Flow, 20 Ton (Cool Only)	No	5	AMRTA	17000	85,000	4000	20,000	105,000
3-b	GHP <u>Constant</u> Flow, 25 Ton (Cool + Warm)	No	0	AMRTA	32000	0	6750	0	0
3-c	GHP <u>Constant</u> Flow, 50 Ton (Heating / Child)	No	0	AMRTA	40000	0	8000	0	0
3-d	Rooftop Unit with Enthalpy Wheel	No	0	Mc-Quay	49000	0	6000	0	0
3-е	Templifier Water to Water Heat Recovery	No	0	Mc-Quay	41000	0	4000	0	0

شركة البدرى للأعمال الكهروميكانيكية

إحدى شركات مجموعة البدرى للتنمية والاستثمار

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR AREA VENTILATION -- Project Quote 16231-01 (VENT-01)

				Offerred	Supply (USD)		Erection (USD)		Total Supply
S.N	Item Description	Unit	QTY	Offered Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
4	Pumping & Mechanical Room Works								
	Supply, installation, testing and commissioning of Geothermal system redundant pump package system to meet the design flow and to be connected and controlled with <u>Electric Control Panel</u> System to be complete with Supply & Return Headers @ Mechanical Rooms c/w pipes, fittings, taps and valves for supply / return lines and expansion tanks and air seprators to act the whole system operation more over system flushing; air removing from ground loop into piping								
4-a	Pumping System for Flow (1-Operation +1-Standby)	Pkg	1	WEILER	17000	17,000	4000	4,000	21,000
4-b	Mechanical Room Works c/w Headers, Valves, Accessories	LS	1	BADRY	13000	13,000	6000	6,000	19,000

 Table D - BOQ for Geothermal System

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR AREA VENTILATION -- Project Quote 16231-01 (VENT-01)

Table D-1: BOQ - Geothermal Ground Coupled System for the Ventilation of Production Area

					Supp	ly (USD)	Erection (USD)		Total Supply
S.N	Item Description	Unit	QTY	Offered Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
5	Delivery / Distribution System								
5-1	SITC Water Transfer / Piping System c/w Valves & Fittings	LS	0	BADRY	75000	0	25000	0	0
5-2	SITC Air Transfer / Ducting System c/w Registers & Dampers	LS	1	BADRY	55000	55,000	15000	15,000	70,000
5-3	SITC Radiant Floor Warming System c/w Outlets	LS	0	BADRY	80000	0	20000	0	0
5-5	Civil / Arch. Ancilaary Works to furnish Distribution System	LS	1	BADRY	0	0	25000	25,000	25,000
6	Control & Management System								
6-1	DDC Control System	LS	0	Rockwell	19000	0	4000	0	0
6-2	BMS / HDMI Operation System with PLC	LS	0	Rockwell	22000	0	5000	0	0
7	Testing & Balance								
7-1	Testing & Ballancing of HVAC / Ducting / Piping Systems of Each Area Acc. To ASHARE / SMACNA / ISO Classification	LS	1	BADRY	0	0	10000	10,000	10,000
S1	GEOTHERMAL - SUM / VENTILATION WORKS	Four Hundred Twenty Five Thousands USD					425,000		

1

 Table D - BOQ for Geothermal System

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR AIR CONDITIONING -- Project Quote 16232-01 (ACND-01)

				Offerred	Supp	ly (USD)	Erection (USD)		Total Supply
S.N	Item Description	Unit	QTY	Offered Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
1	Geothermal System Design & Ground Testing								
	Ground Geothermal Sytem Testing & Designing, provides the designer with accurate information on the thermal conductivity, loop design can be optimized and the path of of piping and Bore-Holes. Tests with Field Testing Appartus will be conducted by drilling borehole and adding loop with hot water from a portable electric heater is circulated. Data log is run over 48 hours and energy absorbed by the ground is measured so that the conductivity and diffusivity could been calculated. Then, Submitting of Trenched Horizontal / Vertical Loop Design, c/w Bore-Hole Layout using Software Design for Ground Loops, Piping								
1-a	Ground Testing for Geothermal of the Planned / Upgrade Area	LS	1	BADRY	0	0	7500	7,500	7,500
1-b	Ground Loop Design for Geothermal of the Planned / Upgrade Area	LS	1	BADRY	0	0	7500	7,500	7,500

Table D - BOQ for Geothermal System

إحدى شركات مجموعة البدرى للتنمية والاستثمار

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR AIR CONDITIONING -- Project Quote 16232-01 (ACND-01)

				Offerred	Supp	ly (USD)	Erection (USD)		Total Supply
S.N	Item Description	Unit	QTY	Offered Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
2	Ground Closed Loop Hydrulic Piping Works								
	Under Ground Geothermal closed loop; Trenched Horizontal / Drilled Vertical, Loop Piping works via HDPE System, c/w Bore-Hole Layout using Software Design for Ground Loops, Piping of HDPE material c/w all required fittings to act as a heat exchanger same to cooling coil. Item complete with Backfill & Grouts for the piping jacket avoiding Air Gaps or seprations via grouting with Thermal Grouts of 60% Quartezil and 20% Cement, 10% Fly Ash, 10% Sand. Hydrulic Fluid of Antifreeze Water Based Solution as a water source refrigrant for Heat Pump to be supplied and equiped.								
2-a	Trenched horizontal HRZ Loop with 6 ft depth, Bore-hole 3 Inch	Ton	40	BADRY	400	16,000	900	36,000	52,000
2-b	Drilled Vertical VER Loop with 100 ft depth, Bore-hole 5 Inch	Ton	60	BADRY	600	36,000	1200	72,000	108,000

Table D - BOQ for Geothermal System

إحدى شركات مجموعة البدرى للتنمية والاستثمار

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR AIR CONDITIONING -- Project Quote 16232-01 (ACND-01)

					Supp	ly (USD)	Erect	ion (USD)	Total Supply	
S.N	Item Description	Unit	QTY	Offered Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)	
3	Geothermal System Equipments (GHP Equipments)									
	Supply, installation, testing and commissioning of Geothermal water source Heat Pump with R-410a Refrigrant with wider fluid operating range and additional insulation of internal co-axial coils, thermal expansion TX Valves and heat exchangers optimized for geothermal operating conditions. GHP to be designed and supplied with <u>FIXED 3 GPM</u> Flow System c/w two-way isolating valves at each heat pump that shut off the flow when the compressors is not runing. Heat Pump to be modulated and equipeed with <u>Electric Protection Panel</u>									
3-a	GHP <u>Constant</u> Flow, 20 Ton (Cool Only)	No	0	AMRTA	17000	0	4000	0	0	
3-b	GHP <u>Constant</u> Flow, 25 Ton (Cool + Warm)	No	4	AMRTA	32000	128,000	6750	27,000	155,000	
3-с	GHP <u>Constant</u> Flow, 50 Ton (Heating / Child)	No	0	AMRTA	40000	0	8000	0	0	
3-d	Rooftop Unit with Enthalpy Wheel	No	0	Mc-Quay	49000	0	6000	0	0	
3-е	Templifier Water to Water Heat Recovery	No	0	Mc-Quay	41000	0	4000	0	0	

إحدى شركات مجموعة البدرى للتنمية والاستثمار

 Table D - BOQ for Geothermal System

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR AIR CONDITIONING -- Project Quote 16232-01 (ACND-01)

				Offerred	Supply (USD)		Erection (USD)		Total Supply
S.N	Item Description	Unit	QTY	Offered Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
4	Pumping & Mechanical Room Works								
	Supply, installation, testing and commissioning of Geothermal system redundant pump package system to meet the design flow and to be connected and controlled with <u>Electric Control Panel</u> System to be complete with Supply & Return Headers @ Mechanical Rooms c/w pipes, fittings, taps and valves for supply / return lines and expansion tanks and air seprators to act the whole system operation more over system flushing; air removing from ground loop into piping								
4-a	Pumping System for Flow (1-Operation +1-Standby)	Pkg	1	WEILER	17000	17,000	4000	4,000	21,000
4-b	Mechanical Room Works c/w Headers, Valves, Accessories	LS	1	BADRY	13000	13,000	6000	6,000	19,000

إحدى شركات مجموعة البدرى للتنمية والاستثمار

 Table D - BOQ for Geothermal System

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR AIR CONDITIONING -- Project Quote 16232-01 (ACND-01)

					Supp	oly (USD)	Erect	ion (USD)	Total Supply
S.N	Item Description	Unit	QTY	Offered Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
5	Delivery / Distribution System								
5-1	SITC Water Transfer / Piping System c/w Valves & Fittings	LS	1	BADRY	75000	75,000	25000	25,000	100,000
5-2	SITC Air Transfer / Ducting System c/w Registers & Dampers	LS	1	BADRY	55000	55,000	15000	15,000	70,000
5-3	SITC Radiant Floor Warming System c/w Outlets	LS	1	BADRY	80000	80,000	20000	20,000	100,000
5-5	Civil / Arch. Ancilaary Works to furnish Distribution System	LS	1	BADRY	0	0	25000	25,000	25,000
6	Control & Management System								
6-1	DDC Control System	LS	0	Rockwell	19000	0	4000	0	0
6-2	BMS / HDMI Operation System with PLC	LS	0	Rockwell	22000	0	5000	0	0
7	Testing & Balance								
7-1	Testing & Ballancing of HVAC / Ducting / Piping Systems of Each Area Acc. To ASHARE / SMACNA / ISO Classification	LS	1	BADRY	0	0	10000	10,000	10,000
S2	GEOTHERMAL - SUM / AIR CONDITIONING WORKS	Six Hundreds Seventy Five Thousands USD					675,000		

 Table D - BOQ for Geothermal System

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR WATER / STEAM HEATING -- Project Quote 16233-01 (HEAT-01)

				Offerred	Supp	ly (USD)	Erection (USD)		Total Supply
S.N	Item Description	Unit	QTY	Offered Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
1	Geothermal System Design & Ground Testing								
	Ground Geothermal Sytem Testing & Designing, provides the designer with accurate information on the thermal conductivity, loop design can be optimized and the path of of piping and Bore-Holes. Tests with Field Testing Appartus will be conducted by drilling borehole and adding loop with hot water from a portable electric heater is circulated. Data log is run over 48 hours and energy absorbed by the ground is measured so that the conductivity and diffusivity could been calculated. Then, Submitting of Trenched Horizontal / Vertical Loop Design, c/w Bore-Hole Layout using Software Design for Ground Loops, Piping								
1-a	Ground Testing for Geothermal of the Planned / Upgrade Area	LS	1	BADRY	0	0	14000	14,000	14,000
1-b	Ground Loop Design for Geothermal of the Planned / Upgrade Area	LS	1	BADRY	0	0	14000	14,000	14,000

 Table D - BOQ for Geothermal System

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR WATER / STEAM HEATING -- Project Quote 16233-01 (HEAT-01)

				Offerred	Supp	ly (USD)	Erection (USD)		Total Supply
S.N	Item Description	Unit	QTY	Offered Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
2	Ground Closed Loop Hydrulic Piping Works								
	Under Ground Geothermal closed loop; Trenched Horizontal / Drilled Vertical, Loop Piping works via HDPE System, c/w Bore-Hole Layout using Software Design for Ground Loops, Piping of HDPE material c/w all required fittings to act as a heat exchanger same to cooling coil. Item complete with Backfill & Grouts for the piping jacket avoiding Air Gaps or seprations via grouting with Thermal Grouts of 60% Quartezil and 20% Cement, 10% Fly Ash, 10% Sand. Hydrulic Fluid of Antifreeze Water Based Solution as a water source refrigrant for Heat Pump to be supplied and equiped.								
2-a	Trenched horizontal HRZ Loop with 6 ft depth, Bore-hole 3 Inch	Ton	40	BADRY	400	16,000	900	36,000	52,000
2-b	Drilled Vertical VER Loop with 100 ft depth, Bore-hole 5 Inch	Ton	60	BADRY	600	36,000	1200	72,000	108,000

 Table D - BOQ for Geothermal System

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR WATER / STEAM HEATING -- Project Quote 16233-01 (HEAT-01)

					Supp	ly (USD)	Erect	ion (USD)	Total Supply
S.N	Item Description	Unit	QTY	Offered Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
3	Geothermal System Equipments (GHP Equipments)								
	Supply, installation, testing and commissioning of Geothermal water source Heat Pump with R-410a Refrigrant with wider fluid operating range and additional insulation of internal co-axial coils, thermal expansion TX Valves and heat exchangers optimized for geothermal operating conditions. GHP to be designed and supplied with <u>FIXED 3 GPM</u> Flow System c/w two-way isolating valves at each heat pump that shut off the flow when the compressors is not runing. Heat Pump to be modulated and equipeed with <u>Electric Protection Panel</u>								
3-a	GHP <u>Constant</u> Flow, 20 Ton (Cool Only)	No	0	AMRTA	17000	0	4000	0	0
3-b	GHP <u>Constant</u> Flow, 25 Ton (Cool + Warm)	No	0	AMRTA	32000	0	6750	0	0
3-с	GHP Constant Flow, 50 Ton (Heating / Child)	No	3	AMRTA	40000	120,000	8000	24,000	144,000
3-d	Rooftop Unit with Enthalpy Wheel	No	0	Mc-Quay	49000	0	6000	0	0
3-е	Templifier Water to Water Heat Recovery	No	1	Mc-Quay	41000	41,000	4000	4,000	45,000

 Table D - BOQ for Geothermal System

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR WATER / STEAM HEATING -- Project Quote 16233-01 (HEAT-01)

				Offerred	Supply (USD)		Erection (USD)		Total Supply
S.N	Item Description	Unit	QTY	Offered Makes	Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
4	Pumping & Mechanical Room Works								
	Supply, installation, testing and commissioning of Geothermal system redundant pump package system to meet the design flow and to be connected and controlled with <u>Electric Control Panel</u> System to be complete with Supply & Return Headers @ Mechanical Rooms c/w pipes, fittings, taps and valves for supply / return lines and expansion tanks and air seprators to act the whole system operation more over system flushing; air removing from ground loop into piping								
4-a	Pumping System for Flow (1-Operation +1-Standby)	Pkg	1	WEILER	17000	17,000	4000	4,000	21,000
4-b	Mechanical Room Works c/w Headers, Valves, Accessories	LS	1	BADRY	13000	13,000	6000	6,000	19,000

 Table D - BOQ for Geothermal System

BADRY Electro-Mechanical Works Co.

GEOTHERMAL SYSTEM FOR WATER / STEAM HEATING -- Project Quote 16233-01 (HEAT-01)

	Item Description		QTY	Offered Makes	Supply (USD)		Erection (USD)		Total Supply
S.N					Unit Rate	Amount	Unit Rate	Amount	& Erection (USD)
5	Delivery / Distribution System								
5-1	SITC Water Transfer / Piping System c/w Valves & Fittings	LS	1	BADRY	75000	75,000	25000	25,000	100,000
5-2	SITC Air Transfer / Ducting System c/w Registers & Dampers	LS	0	BADRY	55000	0	15000	0	0
5-3	SITC Radiant Floor Warming System c/w Outlets	LS	0	BADRY	80000	0	20000	0	0
5-5	Civil / Arch. Ancilaary Works to furnish Distribution System	LS	1	BADRY	0	0	25000	25,000	25,000
6	Control & Management System								
6-1	DDC Control System	LS	0	Rockwell	19000	0	4000	0	0
6-2	BMS / HDMI Operation System with PLC	LS	0	Rockwell	22000	0	5000	0	0
7	Testing & Balance								
7-1	Testing & Ballancing of HVAC / Ducting / Piping Systems of Each Area Acc. To ASHARE / SMACNA / ISO Classification	LS	1	BADRY	0	0	10542.373	10,542	10,542
S 3	GEOTHERMAL - SUM / HEATING WORKS		Five Hundred Fifty Two T			o Thousands, 543 USD		552,542.3729	

Water Source Heat Pump Unit

Cooling capacity from 10 to 133 kW Heating capacity from 12.1 to 156.2 kW

Functions

Characteristics

Structure

Panels and frame are made from galvanized steel protected with polyester powder painting to ensure total resistance to atmospheric agents

Hermetic compressor

Single phase (mod. 10, 12,15) and 3-phase (mod.17 to 130) scroll type compressors, with built-in thermal overload cut-out and crankcase heater, mounted on rubber vibration dampers

Evaporator

High efficiency plate type heat exchanger, factory insulated with flexible close cell material

Condenser

High efficiency plate type heat exchanger, factory insulated with flexible close cell material

Desuperheater

High efficiency stainless steel brazed plate heat exchanger, factory insulated with flexible close cell material

Refrigerant circuit

Copper tube connection with charge valves, filter drier, thermostatic expansion valve (capillary for mod.10 to 15), gas-liquid separator, high pressure switch and low pressure switch The heat pump units are complete also with 4-way valve and one way valve

Hydraulic circuit

Built with user side and source side water inlet/outlet connectors, water discharge connectors, air vent valve (mod.10 to 30 the user side is complete also with expansion vessel, water pump and flow switch.)

Electric panel

Consists of:

- Compressor contactor
- Compressor protection breaker
- User side water pump contactor (for mod.10 to 30)
- User side water pump breaker (for mod.10 to 30)
- Microprocessor with function display

Optional

- Sight glass which must be installed in factory
- Source side flow switch
- Source side water pump
- Anti-vibration rubber
- Metallic filter for the water circuit
- Heat recovery exchanger
- Tube in tube heat exchanger

Technical Data R410a

Model WW	Unit	10	12	15	20	25	30	40	45	50
Nominal cooling capacity*	kW	10	12	15	20	25	30	40	45	50
Nominal heating capacity**	kW	11.6	14	17.5	21	27.3	34.6	41.7	47	55.9
Power suplly	V/PH/Hz		220/1/50			· ·	. 38	80/3/50	•	
Hermetic compressors	S									
Qty	Nr.	1	1	1	1	2	2	2	2	2
Cooling power input*	kW	2.77	3.22	3.89	4.21	5.63	7.09	8.24	10.4	11.04
Cooling current*	A	13.8	16.2	19.1	7.8	10.6	12.8	14.9	18.8	20.1
Heating power input**	kW	3.51	4.15	5.05	5.76	7.63	9.69	11.34	13.97	14.7
Heating current*	A	17.1	20.3	24.5	10.2	13.6	16.8	19.7	24.3	25.8
User side heat exchan	ger			-		_	_			
Pressure drop	kPa	33	33	36	38	38	38	40	40	42
Water flow	m³/h	1.7	21	2.6	3.4	4.3	5.2	6.9	8.1	8.6
Water pipe	DN	25	25	25	25	40	40	40	40	40
Source side heat exch							_			
Pressure drop	kPa	33	33	36	38	38	38	40	40	42
Water flow	m³/h	0.7	0.8	1	1.2	1.6	2	2.5	2.5	3.3
Water pipe	DN	25	25	25	25	40	40	40	40	40
Water pump	14147	0.4	0.40	0.40	0.55	0.75	0.75	0.00	1.05	4.07
power input	kW	0.4	0.49	0.49	0.55	0.75	0.75	0.92	1.05	1.05
current Water bood	A	2.2	2.4	2.4 18	1.1	1.2 19	1.2	1.5	2	2
Water head	m L	17 820	20 820	18 820	820	19	16	17	18	17
Dimension(mm)	W	820 575	820 575	820 575	575	850	850	850	850	850
	H	910	910	910	910	1050	1050	1050	1050	1050
Sound pressure	dB(A)	56	58	62	62	62	64	64	66	66
	. ,			1	1	1	1		1	
Net weight	kg	130	140	150	180	265	280	320	340	360
Model	Unit	55	6	0	68	75	95	110	130	150
Model Nominal cooling capacity*	Unit	55 56	6	0	68 69	75 75	95 94	110 113	130 130	150 150
Model Nominal cooling capacity* Nominal heating	Unit	55	6	0	68	75	95	110	130	150 150
Nominal cooling capacity* Nominal heating capacity** Power suplly	Unit kW kW V/PH/Hz	55 56 62.2	6	0	68 69	75 75	95 94 105.1	110 113	130 130	150 150
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors	Unit kW kW V/PH/Hz	55 56 62.2	6 6 2 70	0 2 0.1 7	68 69 76.4	75 75 83.4 380/3/3	95 94 105.1 50	110 113 124.1	130 130 140.1	150 150 165.4
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty	Unit kW kW V/PH/Hz s	55 56 62.2 2	6 6 2 7(0 2 0.1 7 2	68 69 76.4	75 75 83.4 380/3/ 4	95 94 105.1 50 3	110 113 124.1 3	130 130 140.1 4	150 150 165.4 4
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input*	Unit kW kW V/PH/Hz s Nr. kW	55 56 62.2 2 11.0	6 6 2 7(3 12	0 2).1 7 2 .66 1	68 69 76.4 2 3.7	75 75 83.4 380/3/4 4 14.64	95 94 105.1 50 3 18.99	110 113 124.1 3 22.11	130 130 140.1 4 25.32	150 150 165.4 4 29.4{
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input* Cooling current*	Unit kW kW V/PH/Hz s Nr. kW A	55 56 62.2 2 11.0 19.6	6 2 7(3 12 5 22	0 2 2. 2. 2. 6.66 1 2.8 2. 2. 2. 2. 2. 2. 2. 2. 3.1 7 7 2. 2. 3.1 7 7 7 2. 2. 3.1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	68 69 76.4 1 13.7 1 24.3 1	75 75 83.4 380/3/5 4 14.64 26.8	95 94 105.1 50 3 18.99 34.2	110 113 124.1 3 22.11 38.7	130 130 140.1 4 25.32 45.6	150 150 165.4 4 29.44 51.6
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input**	Unit kW kW V/PH/Hz s Nr. kW A kW	55 566 62.2 2 11.0 19.0 15.4	6 2 7(3 12 3 22 1 17	0 2 2. .1 7 2. .66 1 2.8 2 .02 1	68 69 76.4 1 13.7 1 24.3 8.71	75 75 83.4 380/3/5 4 14.64 26.8 20.84	95 94 105.1 50 <u>3</u> 18.99 34.2 25.53	110 113 124.1 3 22.11 38.7 30.6	130 130 140.1 4 25.32 45.6 34.04	150 150 165.4 4 29.44 51.6 40.8
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input** Heating current*	Unit kW kW V/PH/Hz s Nr. kW A kW A	55 56 62.2 2 11.0 19.6	6 2 7(3 12 3 22 1 17	0 2 2. .1 7 2. .66 1 2.8 2 .02 1	68 69 76.4 1 13.7 1 24.3 1	75 75 83.4 380/3/5 4 14.64 26.8	95 94 105.1 50 3 18.99 34.2	110 113 124.1 3 22.11 38.7	130 130 140.1 4 25.32 45.6	150 150 165.4 4 29.44 51.6 40.8
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input* Cooling power input* Heating power input** Heating current* User side heat exchan	Unit kW kW V/PH/Hz s Nr. kW A kW A ger	2 11.0 15.4 26.5	6 2 7(3 12 3 22 1 17 3 25	0 2 2 .0.1 7 2 .66 1 2.8 2 .02 1 0.4 3	68 69 76.4	75 75 83.4 380/3/4 4 14.64 26.8 20.84 36.4	95 94 105.1 50 3 18.99 34.2 25.53 44.1 1	110 113 124.1 3 22.11 38.7 30.6 51.6	130 130 140.1 4 25.32 45.6 34.04 58.8	150 150 165.4 29.44 51.6 40.8 68.8
Model Nominal cooling capacity* Nominal heating capacity** Power supIly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input** Heating current* User side heat exchan Pressure drop	Unit kW kW V/PH/Hz s Nr. kW A kW A kW kW kPa	2 11.0 19.6 15.4 26.3	6 2 7 3 12 5 22 1 17 3 25 22 1 4	0 2 0.1 7 2. 6.66 1 2.8 2 0.2 1 0.4 3 8	68 69 76.4	75 75 83.4 380/3/4 4 14.64 26.8 20.84 36.4 50	95 94 105.1 50 3 18.99 34.2 25.53 44.1 52	110 113 124.1 3 22.11 38.7 30.6 51.6 52	130 130 140.1 4 25.32 45.6 34.04 58.8 55	150 150 165.4 4 29.44 51.6 40.8 68.8 55
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input** Heating power input** User side heat exchan Pressure drop Water flow	Unit kW kW V/PH/Hz s Nr. kW A kW A ger kPa m³/h	55 56 62.2 2 11.0 19.6 15.4 26.5 42 9.6	6 6 2 7 3 12 3 12 3 12 3 12 3 12 3 12 3 12 4 10 10 10 10 10 10 10 10 10 10	0 2 2	68 69 76.4	75 75 83.4 380/3/4 4 14.64 26.8 20.84 36.4 50 12.9	95 94 105.1 50 3 18.99 34.2 25.53 44.1 52 16.2 16.2	110 113 124.1 3 22.11 38.7 30.6 51.6 52 19.4	130 130 140.1 4 25.32 45.6 34.04 58.8 55 22.4	150 150 165.4 29.44 51.6 40.8 68.8 55 25.8
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input** Heating power input** User side heat exchan Pressure drop Water flow Water pipe	Unit kW kW V/PH/Hz s Nr. kW A kW A ger kPa m ³ /h DN	2 11.0 19.6 15.4 26.3	6 6 2 7 3 12 3 12 3 12 3 12 3 12 3 12 3 12 4 10 10 10 10 10 10 10 10 10 10	0 2 2	68 69 76.4	75 75 83.4 380/3/4 4 14.64 26.8 20.84 36.4 50	95 94 105.1 50 3 18.99 34.2 25.53 44.1 52	110 113 124.1 3 22.11 38.7 30.6 51.6 52	130 130 140.1 4 25.32 45.6 34.04 58.8 55	150 150 165.4 4 29.44 51.6 40.8 68.8 55
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input** Heating current* User side heat exchan Pressure drop Water flow Water pipe Source side heat excha	Unit kW kW V/PH/Hz s Nr. kW A kW A kW A ger kPa m³/h DN anger	55 56 62.2 11.0 19.6 15.4 26.3 42 9.6 50	6 6 2 7(3 12 5 22 1 17 3 29 4 1 10 5	0 2 2	68 69 76.4	75 75 83.4 380/3/3 4 14.64 26.8 20.84 36.4 50 12.9 50	95 94 105.1 50 3 1 50 34.2 25.53 44.1 52 16.2 65 65	110 113 124.1 3 22.11 38.7 30.6 51.6 52 19.4 65	130 130 140.1 4 25.32 45.6 34.04 58.8 55 22.4 80	150 150 165.4 29.44 51.6 40.8 68.8 55 25.8 80
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input** User side heat exchan Pressure drop Water pipe Source side heat excha	Unit kW kW V/PH/Hz s Nr. kW A kW A ger kPa m³/h DN anger kPa	55 56 62.2 11.0 19.0 15.4 26.3 42 9.6 50	6 6 2 7(3 12 5 22 1 17 3 25 1 17 3 25 4 1(5 5 4	0 2 2	68 69 76.4 2 13.7 24.3 8.71 31.9 48 11.9 50 48	75 75 83.4 380/3/4 4 14.64 26.8 20.84 36.4 50 12.9 50 50	95 94 105.1 50 3 1 50 34.2 25.53 44.1 52 16.2 65 52	110 113 124.1 3 22.11 38.7 30.6 51.6 52 19.4 65 52 52	130 130 140.1 4 25.32 45.6 34.04 58.8 55 22.4 80 55	150 150 165.4 29.4 51.6 40.8 68.8 55 25.8 80 55
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input** Heating current* User side heat exchan Pressure drop Water flow Water pipe Source side heat exch Pressure drop Water flow	Unit kW kW V/PH/Hz s Nr. kW A kW A m³/h DN anger kPa m³/h Manger	55 56 62.3 2 11.0 19.0 15.4 26.3 9.6 50 42 3.7	6 6 2 7 3 3 12 3 22 1 17 3 25 22 1 17 3 25 22 1 17 3 25 22 1 17 5 25 22 1 17 5 25 22 1 17 5 25 25 12 5 25 25 10 10 10 10 10 10 10 10 10 10 10 10 10	0 2 2	68 69 76.4 2 13.7 24.3 8.71 31.9 48 11.9 50 48 4.5	75 75 83.4 380/3/4 14.64 26.8 20.84 36.4 50 12.9 50 50 50 4.9	95 94 105.1 50 3 18.99 34.2 25.53 44.1 52 16.2 65 52 6.2	110 113 124.1 3 22.11 38.7 30.6 51.6 52 19.4 65 52 7.3	130 130 140.1 4 25.32 45.6 34.04 58.8 55 22.4 80 55 8.3	150 150 165.4 29.44 51.6 40.8 68.8 55 25.8 80 55 25.8 80 55 9.7
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input** Heating current* User side heat exchan Pressure drop Water flow Water pipe Source side heat exch Pressure drop Water flow Water flow Water flow Water pipe	Unit kW kW V/PH/Hz s Nr. kW A kW A ger kPa m³/h DN anger kPa	55 56 62.2 11.0 19.0 15.4 26.3 42 9.6 50	6 6 2 7 3 3 12 3 22 1 17 3 25 22 1 17 3 25 22 1 17 3 25 22 1 17 5 25 22 1 17 5 25 22 1 17 5 25 25 12 5 25 25 10 10 10 10 10 10 10 10 10 10 10 10 10	0 2 2	68 69 76.4 2 13.7 24.3 8.71 31.9 48 11.9 50 48	75 75 83.4 380/3/4 4 14.64 26.8 20.84 36.4 50 12.9 50 50	95 94 105.1 50 3 1 50 34.2 25.53 44.1 52 16.2 65 52	110 113 124.1 3 22.11 38.7 30.6 51.6 52 19.4 65 52 52	130 130 140.1 4 25.32 45.6 34.04 58.8 55 22.4 80 55	150 150 165.4 29.44 51.6 40.8 68.8 55 25.8 80 55
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input** Heating current* User side heat exchan Pressure drop Water flow Water pipe Source side heat exch Pressure drop Water flow Water flow Water pipe Water pipe Water pipe Water pipe	Unit kW kW V/PH/H2 s Nr. kW A kW A ger kPa m ³ /h DN anger kPa	55 56 62.3 2 11.0 19.0 15.4 26.3 9.6 50 42 3.7	6 6 2 7 3 3 12 3 22 1 17 3 25 22 1 17 3 25 22 1 17 3 25 22 1 17 5 25 22 1 17 5 25 22 1 17 5 25 25 12 5 25 25 10 10 10 10 10 10 10 10 10 10 10 10 10	0 2 2.1 7 2.66 1 0.4 3 0 8 1.1 0	68 69 76.4 2 13.7 24.3 8.71 31.9 48 11.9 50 48 4.5	75 75 83.4 380/3/4 14.64 26.8 20.84 36.4 50 12.9 50 50 50 4.9	95 94 105.1 50 3 18.99 34.2 25.53 44.1 52 16.2 65 52 6.2	110 113 124.1 3 22.11 38.7 30.6 51.6 52 19.4 65 52 7.3	130 130 140.1 4 25.32 45.6 34.04 58.8 55 22.4 80 55 8.3	150 150 165.4 29.4 51.6 40.8 68.8 55 25.8 80 55 25.8 80 55 9.7
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input* Cooling power input* Heating power input** Heating power input** Heating current* User side heat exchan Pressure drop Water flow Water flow Water flow Water flow Water pipe Water flow Water pipe Power input	Unit kW kW V/PH/H2 s Nr. kW A kW A kW A ger kPa m³/h DN anger kPa m³/h DN	55 56 62.3 11.0 19.0 15.4 26.3 9.6 50 42 3.7 50	6 6 2 7 3 12 5 22 1 17 3 25 22 1 17 3 25 22 1 17 3 25 22 1 17 5 4 10 5 5 4 4 5 5	0 2 2.1 7 2.66 1 0.4 3 0 8 1.1 0	68 69 76.4 2 13.7 24.3 8.71 31.9 48 11.9 50 48 4.5 50	75 75 83.4 380/3/4 14.64 26.8 20.84 36.4 50 12.9 50 50 50 50 50 50 50	95 94 105.1 50 3 18.99 34.2 25.53 44.1 52 16.2 65 52 65 52 65	110 113 124.1 3 22.11 38.7 30.6 51.6 52 19.4 65 52 7.3 65	130 130 140.1 4 25.32 45.6 34.04 58.8 55 22.4 80 55 8.3 80	150 150 165.4 29.44 51.6 40.8 68.8 55 25.8 80 55 25.8 80 55 9.7
Model Nominal cooling capacity* Nominal heating capacity* Power suplly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input** Heating current* User side heat exchan Pressure drop Water flow Water pipe Source side heat exch Pressure drop Water flow Water pipe Power input Current	Unit kW kW V/PH/H2 s Nr. kW A kW A ger kPa m ³ /h DN anger kPa m ³ /h DN anger kPa	55 56 62.2 11.0 19.0 15.4 26.3 9.6 50 42 3.7 50 <i>/</i>	6 2 70 3 12 3 22 1 17 3 25 4 10 5 5 4 5 4 5	0 2 2. 2. 2. 6.66 1 0.4 3 8 0.7 1 0 1 0	68 69 76.4 2 13.7 24.3 8.71 31.9 48 11.9 50 48 4.5 50 /	75 75 83.4 380/3/9 4 14.64 26.8 20.84 36.4 50 12.9 50 50 50 50 50 50 4.9 50 4.9 50	95 94 105.1 50 3 18.99 34.2 25.53 44.1 52 16.2 65 52 6.2 65 7 / /	110 113 124.1 3 22.11 38.7 30.6 51.6 52 19.4 65 52 7.3 65 / /	130 130 140.1 4 25.32 45.6 34.04 58.8 55 22.4 80 55 8.3 80 / /	150 150 165.4 4 29.44 51.6 40.8 68.8 68.8 68.8 555 25.8 80 555 9.7 80
Model Nominal cooling capacity* Nominal heating capacity* Power suplly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input** Heating current* User side heat exchan Pressure drop Water flow Water pipe Source side heat exch Pressure drop Water flow Water pipe Power input Current	Unit kW kW V/PH/H2 s Nr. kW A kW A kW A ger kPa m³/h DN anger kPa m³/h DN	55 56 62.2 11.0 19.0 15.4 26.3 2 42 9.6 50 50 42 3.7 50	6 6 2 7 3 12 5 22 1 17 3 25 22 1 17 3 25 4 10 5 4 4 5 4 4 5 4 4 5 5 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	0 2 2. 0.1 7 2 666 1 0.4 3 0.7 1 0 8 .1 0 1 1 0	68 69 76.4 2 13.7 24.3 8.71 31.9 48 11.9 50 48 4.5 50 / /	75 75 83.4 380/3/3 4 14.64 26.8 20.84 36.4 50 12.9 50 50 50 4.9 50 1/	95 94 105.1 50 3 18.99 34.2 25.53 44.1 52 16.2 65 52 65 /	110 113 124.1 3 22.11 38.7 30.6 51.6 52 19.4 65 52 7.3 65 /	130 130 140.1 4 25.32 45.6 34.04 58.8 55 22.4 80 55 8.3 80 / / /	150 150 165.4 4 29.44 51.6 40.8 68.8 68.8 80 555 25.8 80 55 55 9.7 80 / / / /
Model Nominal cooling capacity* Nominal heating capacity** Power suplly Hermetic compressors Qty Cooling power input* Cooling power input* Heating power input** Heating current* User side heat exchan Pressure drop Water flow Water flow Water flow Water flow Water flow Water pipe Water flow Water pipe Water pipe Power input	Unit kW kW V/PH/Hz s Nr. kW A kW A kW A ger kPa m ³ /h DN anger kPa m ³ /h DN anger kPa m ³ /h DN	55 56 62.2 11.0 19.0 15.4 26.3 9.6 50 42 9.6 50 7 42 9.7 50	6 2 70 3 12 3 12 3 22 1 17 3 25 1 17 3 25 4 10 5 4 4 5 4 4 5 5 0 14	0 2 2 2 0.1 7 2 2 6.66 1 2.8 2 0.02 1 0.4 3 8 2 0.7 1 0 3 8 1 0 1 1 1	68 69 2 33.7 24.3 8.71 31.9 48 11.9 50 48 4.5 50 / / /	75 75 83.4 380/3/4 4 14.64 26.8 20.84 36.4 50 12.9 50 12.9 50 12.9 50 12.9 50 12.9 50 12.9 50 12.9 50 12.9 10 10 10 11	95 94 105.1 50 3 18.99 34.2 25.53 44.1 52 16.2 65 52 6.2 65 7 / / / /	110 113 124.1 3 22.11 38.7 30.6 51.6 52 19.4 65 52 7.3 65 / / / / /	130 130 140.1 4 25.32 45.6 34.04 58.8 55 22.4 80 55 8.3 80 / /	150 150 165.4 4 29.48 516 40.8 68.8 55 25.8 80 55 9.7 80 / / / / / 1850
Model Nominal cooling capacity* Nominal heating capacity** Power supIly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input** Heating power input** User side heat exchan Pressure drop Water flow Water pipe Source side heat exch Pressure drop Water pipe Water pipe Water pipe Power input Current Water head	Unit kW kW V/PH/Hz s Nr. kW A kW A ger kPa m ³ /h DN anger kPa m ³ /h DN anger kPa m ³ /h L	55 56 62.3 2 11.0 19.6 15.4 26.3 42 9.6 50 42 3.7 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 2 70 3 12 3 12 3 22 1 17 3 29 4 10 4 5 4 5 4 5 0 14 0 88	0 2 2 2 0.1 7 2 2 2.666 1 2.8 2 0.02 1 0.4 3 8 2 0.7 1 0 1 0 1 0 1 0 1 0 1 0 1 00 1	68 69 76.4 2 13.7 24.3 8.71 31.9 48 11.9 50 48 4.5 50 / / / / 400	75 75 83.4 380/3/4 4 14.64 26.8 20.84 36.4 50 12.9 50 4.9 50 4.9 50 1.9 50 1.9 50 1.9 50 1.9 50 1.9 1.0 1.0 1.0	95 94 105.1 50 3 18.99 34.2 25.53 44.1 52 16.2 65 52 6.2 65 7 1 1400	110 113 124.1 3 22.11 38.7 30.6 51.6 52 19.4 65 52 7.3 65 / / / / / / / 1850	130 130 140.1 4 25.32 45.6 34.04 58.8 55 22.4 80 55 8.3 80 / / / / / / / / / / / / /	150 150 165.4 4 29.48 516 40.8 68.8 55 25.8 80 55 25.8 80 55 9.7 80 7 / / / / / 1850 880
Model Nominal cooling capacity* Nominal heating capacity** Power supIly Hermetic compressors Qty Cooling power input* Cooling current* Heating power input** Heating power input** User side heat exchan Pressure drop Water flow Water pipe Source side heat exch Pressure drop Water pipe Water pipe Water pipe Power input Current Water head	Unit kW kW V/PH/Hz s Nr. kW A kW A kW A m³/h DN anger kPa m³/h DN akPa m³/h DN anger kW A m³/h DN m³/h DN m³/h DN H	55 56 62.2 11.0 19.6 15.4 26.3 42 9.6 50 42 9.7 7.7 7.7 7.7 7.7 7.7 7.7 9.6 50 42 9.6 50 42 9.6 50 142 140 850	6 2 70 3 12 3 12 1 17 3 22 1 17 3 25 4 10 4 5 4 5 0 14 0 88 0 10	0 2 2 2 0.1 7 2 2 2.66 11 2.8 2 0.02 1 0.4 3 0 3 0 3 1 4 0 3 1 4 0 3 1 4 1 4 1 4 1 4 1 5 1 5	68 69 76.4 2 13.7 24.3 8.71 31.9 48 11.9 50 48 14.5 50 7 7 7 7 7 7 7 7 400 350	75 75 83.4 380/3/4 4 14.64 26.8 20.84 36.4 50 12.9 50 4.9 50 4.9 50 1.0 7 1	95 94 105.1 50 3 18.99 34.2 25.53 44.1 52 16.2 65 52 6.2 65 7 1400 850	110 113 124.1 3 22.11 38.7 30.6 51.6 52 19.4 65 52 7.3 65 / / / / / 1850 880	130 130 140.1 4 25.32 45.6 34.04 58.8 55 22.4 80 55 8.3 80 / / / / 1850 880	29.48 51.6 40.8 68.8 55 25.8 80 55 9.7 80

Performance values refer to the following conditions:

 * Source side water inlet/outlet temperature 18°C/29°C, user side water inlet/outlet temperature 12°C/7°C.

** Source side water inlet/outlet temperature 15°C/7°C, user side water inlet/outlet temperature 40°C/45°C.

*** Sound pressure measured at a distance of 1 m and a height of 1.5 m above the ground in an open field.

🇱 👩 🎇 😒 🕅 01

Water Cooled Packaged Unit

2.5kW-45kW 🛛 💥 🔀

Application areas

- Offices, Hotels, Hospitals
- Industry
- Administration
- Commercial buildings

Why this choice?

- Saving space
- Galvanised steel construction
- AMWCP are well insulated to minimise condensation and attenuate noise.

Characteristics

Structure

Galvanised steel construction, closed cell foam lined compressor and fan compartments, with an insulted and powder coated drain tray for complete moisture protection, the drain tray is easily removed for inspection and cleaning.

Refrigerant

Each unit is factory charged with refrigerant R410a, which is deemed to have zero ozone depletion potential.

Hermetic compressor

Single phase rotary compressor is used for this type unit, with built-in thermal overload cutout, mounted on rubber vibration dampers.

Centrifugal fan

High efficiency, double inlet centrifugal fan Protection level IP44. Low noise, low speed, big air flow and high ESP.

Water side heat exchanger

High efficiency coaxial heat exchanger, factory insulated with flexible close cell material.

Air filter

An optional filter integrated return air spigot is available on all models. The filter is a washable polypropylene net media. Care should be taken, when locating each unit, that to enough space is provided to enable the one-piece filter to be withdrawn to its full length from either side of the unit.

Insulation

AMWCP are well insulated to minimise condensation and attenuate noise.

Electric heater(optional)

Electric heater is optional on cooling only versions. Electric elements have spirally wound stainless steel fins to give increased area and low surface temperature. They are totally enclosed within the unit and are supplied with safety cutouts. An optional fan run-on timer for rapid heat dissipation is available.

Electric panel

Consists of: Compressor contactor Compressor protection breaker Microprocessor with function display

All models are equipped with wire controller with the following features

- 7 days programmable timer
- Auto random restart
- Error self diagnostic

Safety protection

High pressure switch Low pressure switch Discharge temperature protection Anti freezing protection

Technical Data

Model		Unit	WCP2.5	WCP3.5	WCP5	WCP7	WCP10	WCP12			
Nominal co	oling capacity	kW	2.5	3.5	5	7	10	12.2			
Cooling power input		kW	0.71	0.98	1.4	1.92	2.8	3.32			
Nominal he	ating capacity	kW	3	4.5	6.4	8.1	12.2	14.5			
Heating pov	wer input	kW	0.72	1.07	1.5	2	2.9	3.25			
Power			220V/1Ph/50Hz								
Minimum w	viring specification		2×1.5mm	² +1×1mm ²	2×2.5mm ² -	+1×1.5mm ²	2×4mm ² +	1×2.5mm ²			
Compressor	type				Rot	ary					
Air flow am	ount	m³/h	490	680	950	1280	1900	2160			
External sta	tic pressure	Pa	60	60	120	120	160	200			
Defiinement	Туре		R410A								
Refrigerant	Charge	Kg	0.4	0.6	0.85	1.1	1.7	1.9			
Condenser Type		Tube in tube coaxial heat exchanger									
	Туре		High efficiency low noise centrifugal fan								
Fan	Power		220V/1Ph/50Hz								
Evaporator Type			High efficiency copper tubes aluminum fins heat exchanger								
Water flow	amount	m³/h	0.4	0.6	0.9	1.2	1.7	2.1			
Water press	ure drop	Кра	8	8	10	14	16	20			
Diameter of water in/out pipe		mm	DN20								
Diameter of condensing pipe		mm	DN25								
	L	mm	910	910	1030	1090	1140	1370			
Dimension	W	mm	743	743	743	863	864	864			
	Н	mm	430	430	430	530	530	530			
Weight		kg	70	75	90	100	130	135			
Noise level		dB(A)	54	54	57	57	60	60			

Note:

1. Norminal cooling capacity test condition: Water side water inlet/outlet 30°C/35°C, Ambient temperature DB 27 °C, WB 19 °C.

2. Norminal heating capacity test condition: Water side water inlet 20°C, Ambient temperature DB 20 °C, WB 15 °C.

3. Noise level measured in the noise lab with background noise of 25 dB(A), at a distance of 1 m.

4. As our continuous products improvement, Amrta reserves the right to change specifications and design without notice.

Technical Data

Model	Unit	WCP14	WCP18	WCP23	WCP30	WCP35	WCP45		
Nominal cooling capacity	kW	14.4	18	23	30	34	46		
Cooling power input	kW	4.06	5.1	6.18	7.8	8.26	11.6		
Nominal heating capacity	kW	17.3	22.6	25.9	30	35.4	49		
Heating power input	kW	4	5.6	6.86	8.6	9.1	12.84		
Power		220V/1Ph/50Hz		38	0V/3Ph/50I	Hz			
Minimum wiring specification		2×6mm ² +1>	×4mm ²	3×2.5mm ² -	+1×1.5mm ²	3×4mm ² +	1×2.5mm ²		
Compressor type		Rotary			Scroll				
Air flow amount	m³/h	2500	3200	4000	5200	6200	8000		
External static pressure	Pa	200	200	250	250	250	250		
Refrigerant				R410A					
Charge	Kg	2.2	3	4	4.8	6	8		
Condenser Type		Tube in tube coaxial heat exchanger							
Type Fan			High effici	iency low noi	se centrifuga	l fan			
Power				220V/1Ph/	'50Hz				
Evaporator Type		High efficiency copper tubes aluminum fins heat exchanger							
Water flow amount	m³/h	2.4	3.1	4	5.2	5.8	7.9		
Water pressure drop	Кра	20	23	26	30	33	33		
Diameter of water in/out pipe	mm	DN20			DN40				
Diameter of condensing pipe	mm			DN25					
L	mm	1370	1370	1370	1540	1790	1950		
Dimension W	mm	864	864	934	934	1084	1084		
Н	mm	530	530	630	685	685	685		
Weight	kg	140	155	170	200	200	245		
Noise level	dB(A)	63	66	66	68	68	69		

Note:

1. Norminal cooling capacity test condition: Water side water inlet/outlet 30°C/35°C, Ambient temperature DB 27 °C, WB 19 °C.

2. Norminal heating capacity test condition: Water side water inlet 20°C, Ambient temperature DB 20 °C, WB 15 °C.

3. Noise level measured in the noise lab with background noise of 25 dB(A), at a distance of 1 m.

4. As our continuous products improvement, Amrta reserves the right to change specifications and design without notice.

شركة البدرى للأعمال الكهروميكانيكية

إحدى شركات مجموعة البدري للتنمية والاستثمار

BADRY Electro-Mechanical Works Co.

6B, sixth October St. Manshiet Al Sad Al Aaly. Al-salam, Cairo, Egypt. Tel: +202 2190 6401, +202 2190 6823 Fax: +202 2190 6823 - Cell: +20 100 5743 852 E-mail: mep@badrygroup.com Web: www.badrygroup.com

